
How Tracking Companies Circumvented Ad Blockers Using
WebSockets

Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, Christo Wilson
Northeastern University

Boston, MA
{ahmad,arshad,ek,wkr,cbw}@ccs.neu.edu

ABSTRACT
In this study of 100,000 websites, we document how Advertis-
ing and Analytics (A&A) companies have used WebSockets to
bypass ad blocking, exfiltrate user tracking data, and deliver ad-
vertisements. Specifically, our measurements investigate how a
long-standing bug in Chrome’s (the world’s most popular browser)
chrome.webRequest API prevented blocking extensions from be-
ing able to interpose on WebSocket connections. We conducted
large-scale crawls of top publishers before and after this bug was
patched in April 2017 to examine which A&A companies were using
WebSockets, what information was being transferred, and whether
companies altered their behavior after the patch. We find that a
small but persistent group of A&A companies use WebSockets, and
that several of them engaged in troubling behavior, such as browser
fingerprinting, exfiltrating the DOM, and serving advertisements,
that would have circumvented blocking due to the Chrome bug.

ACM Reference Format:
Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson,
Christo Wilson. 2018. How Tracking Companies Circumvented Ad Block-
ers Using WebSockets. In 2018 Internet Measurement Conference (IMC ’18),
October 31-November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3278532.3278573

1 INTRODUCTION
The use of techniques to block online ads and prevent tracking
has proliferated in recent years. Measurement studies estimate that
Adblock Plus is used by roughly 16–37% of web users [37, 49],
and numerous other extensions like Ghostery, Disconnect, Privacy
Badger, and uBlock Origin have devoted user bases.

In response to the proliferation of blocking and privacy tools, on-
line Advertising and Analytics (A&A) companies have fought back
in a variety of ways. This includes industry self-regulation such as
the Ad Choices initiative [4], as well as technological mechanisms
like anti-ad blocking scripts [41, 44]. Most alarmingly, some com-
panies have attempted to circumvent privacy tools, with the most
infamous case being Google’s evasion of Safari’s third-party cookie
blocking policy, which resulted in a $22.5M settlement with the
FTC [15]. Franken et al. [22] developed a principled set of tests to as-
sess whether tracking countermeasures in browsers and extensions

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278573

could be evaded, and found many flaws that could be leveraged by
A&A companies (but were not at the time, circa 2018).

In August 2016, privacy conscious users began to notice ads
appearing on specific websites on Chrome, despite the use of ad
blocking extensions [27, 50]. Online sleuths determined that (1)
these ads were being downloaded viaWebSockets because (2) a long-
standing bug in the chrome.webRequest API in Chromium [29]
allowed WebSocket connections to bypass ad blocking extensions.
We refer to this issue as the webRequest Bug (WRB). Google patched
the WRB in Chrome 58, released on April 19, 2017 [48].

In this paper, we study the behavior of A&A companies with
respect to the WRB. Prior to April 19, 2017, there existed a five
year window in which blocking extensions in Chrome (the world’s
most popular web browser [56]) could be circumvented through
the use of WebSockets. We ask the following questions: which A&A
companies, if any, decided to leverage this bug? Similarly, after
the release of Chrome 58, did A&A companies continue to use
WebSockets, or did they revert to HTTP/S? These questions are
important, as they speak to the lengths that A&A companies are
willing to go to track users and monetize impressions.

To answer these questions, we performed four crawls of the top
Alexa websites: two just prior to the release of Chrome 58, and two
after. Our crawls were conducted using stock Chrome coupled with
custom instrumentation to record the inclusion tree of resources
within each webpage [5, 8, 35] (see § 3 for details).

Using this data, we make the following key findings:
• Although we find that WebSocket usage is rare overall (∼2%
of publishers), 65–72% of WebSockets are related to tracking
and advertising in some way. Furthermore, we find that A&A
sockets are more prevalent on Alexa top-10K publishers as
compared to less popular publishers.
• We observe 94 A&A domains initiating and 20 A&A do-
mains receiving WebSocket connections, including some of
the largest players in the advertising ecosystem (e.g., Dou-
bleClick and Facebook).
• We find that the overall frequency of WebSockets used by
A&A domains did not change after the release of Chrome
58, although the number of unique WebSocket initiators
dropped from 75 to 23, as major ad networks (e.g., Dou-
bleClick) discontinued their use.
• We find sensitive information being sent over WebSock-
ets to A&A companies. 33across collected browser finger-
prints [2, 19, 31, 43, 51], while Hotjar, LuckyOrange, and
TruConversion collected the entire DOM, which can contain
sensitive information such as search queries, unsent mes-
sages, etc., within the given webpage. Lockerdome was using
WebSockets to serve URLs to ads. These results highlight that

https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/3278532.3278573

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Bashir et al.

2012

Original bug
reported

Users report
unblocked ads

Patch
Landed

Chrome 58
released

* *
2013 2014 2015 2016 2017 2018

* *

* Represents when our crawls were done

Figure 1: Timeline for the WRB and our four crawls.

the WRB did enable A&A companies to circumvent blocking
extensions in ways that users may find objectionable.

2 BACKGROUND
We begin by providing an overview ofWebSockets, the webRequest
API, and a brief timeline of the WRB.

2.1 WebSockets
The WebSocket protocol, standardized by RFC 6455 in 2011, gave
JavaScript developers access to a bidirectional, socket-like network
interface, in which client-side JavaScript can open a WebSocket
connection to a server. This protocol enables developers to create
web applications that receive real-time information or “pushed”
messages from the server-side, without wasting bytes or incurring
latency due to the constant construction of new TCP connections.

2.2 webRequest API
As of 2017, major browser vendors like Firefox and Edge sup-
port the Chrome extension API. One of its key capabilities is
the chrome.webRequest API, which allows extensions to in-
spect, modify, and even drop outgoing network requests. The
chrome.webRequest.onBeforeRequest callback is often used by
ad blockers and privacy preserving tools to filter undesirable out-
going network requests [29].

2.3 The Rise and Fall of a Bug
In May 2012, users created a bug report in the Chromium issue
tracker after observing that WebSocket connections did not trig-
ger the chrome.webRequest.onBeforeRequest callback [29]. We
refer to this as the webRequest Bug (WRB).

The WRB languished unpatched for four years. In late 2014,
AdBlock Plus users began to report that unblockable ads were ap-
pearing on specific webpages, but only in Chrome [3]. By mid-2016,
EasyList and uBlock Origin users were also observing unblock-
able ads [27, 50]. The users investigated and determined that the
ads were being loaded via WebSockets, i.e., the WRB was being
leveraged by some ad networks to circumvent blockers. Blocking
extensions implemented complicated workarounds to mitigate the
WRB in the absence of a permanent bugfix [3, 26]. In November
2016, Pornhub was caught circumventing ad blocking extensions
usingWebSockets [11, 38]. TheWRBwas finally patched in Chrome
58, released in April 19, 2017 [48]. Figure 1 shows the timeline of
key events related to the WRB.

Source for pub/index.html:

<html><body>
 <script src=”script.js”></script>
 <object data=”banner/flash.swf”></object>
 <script src=”tracker/script.js”></script>

 <script src=”ads/script.js”></script>
 <iframe src=”ads/frame.html”>
 <html><body>
 <script src=”script.js”></script>

 </body></html>
 </iframe>
</body></html>

Source code for ads/script.js:

let ws =
 new WebSocket(“ws://adnet/data.ws”, …);
ws.onopen = function(e) { ws.send(“...”); }

(DOM Tree) (Inclusion Tree)

tracker/
script.js

pub/
index.html

tracker/
image.jpg

ads/
script.js

ads/
frame.html

ads/
script.js

adnet/
data.ws

pub/
script.js

banner/
flash.swf

ads/
image.img

Figure 2: Sample DOM tree with corresponding inclusion
tree. Note how a WebSocket request becomes a child to the
requesting JavaScript resource.

3 METHODOLOGY
The goal of our study is to analyze WebSockets usage on the web,
and to determine whether A&A companies were using them to
bypass ad blockers. In this section, we outline our data collection
methodology. We also describe the inclusion trees produced by our
crawler, and explain how we use these to attribute WebSockets.

3.1 Inclusion Tree
To determine which A&A companies were using WebSockets to
circumvent blockers, we are not only interested in determining the
existence of a WebSocket on a webpage, but also figuring out which
parties established the socket in the first place. Prior studies have
shown that relying on HTTP requests to determine resource inclu-
sions can be misleading due to dynamic code (e.g., JavaScript, Flash
etc.) from third parties [8]. This occurs because the Referer header
is set to the first-party domain, even if the resource making the
request originated from a third-party. Furthermore, using the Doc-
ument Object Model APIs (a.k.a. the DOM; programming interface
for HTML and XML documents [23]) to capture resource inclusions
also does not work because it encodes syntactic structures rather
than semantic relationships between resource inclusions.

To solve this problem we use inclusion trees, introduced by Ar-
shad et al. [5]. Inclusion trees capture the semantic relationship
between resource inclusions in websites. Figure 2 shows a sample
DOM tree and its corresponding inclusion tree. We capture inclu-
sion trees from Chrome by leveraging the Chrome Debugging Pro-
tocol [14]. Specifically, to capture the inclusion relationships within
Chrome using the Debugger domain, we track JavaScript by collect-
ing the scriptParsed events, which are triggered by the execution
of inline and remote scripts. We observe further resource requests
via the requestWillBeSent and responseReceived events in the
Network domain. Using these two events, we can capture most of
the dynamic inclusion chains. To capture the iframe inclusions,
we collect frameNavigated events in the Page domain.

How Tracking Companies Circumvented Ad Blockers Using WebSockets IMC ’18, October 31-November 2, 2018, Boston, MA, USA

3.2 WebSocket Detection and Labeling
A main distinguishing feature of our tool from previous
work [5, 8, 35] is its ability to detect WebSocket requests ini-
tiated by JavaScript. In our implementation, we treat Web-
Sockets as child nodes of the JavaScript node responsible
for initiating them. Figure 2 shows how adnet/data.ws be-
comes the child of ads/script.js. To identify WebSocket re-
quests, we capture a number of events in the Network domain:
webSocketCreated, webSocketWillSendHandshakeRequest, and
webSocketHandshakeResponseReceived for socket initiation;
webSocketFrameSent and webSocketFrameReceived for data col-
lection; and webSocketClosed for socket termination.
Detecting A&A Resources. To determine whether a socket
was initiated by scripts or objects that originated from A&A do-
mains, we first derive a set of A&A domains from the inclu-
sion chains provided by Bashir et al. [8]. Each resource in [8] is
tagged as A&A or non-A&A using the EasyList and EasyPrivacy
rule lists; from this dataset, we extract a set of all 2nd -level do-
mains D (e.g., 2nd -level domain for both x.doubleclick.net and
y.doubleclick.net will be doubleclick.net). Let a(d) and n(d)
be the number of times a given 2nd -level domain d ∈ D was labeled
as A&A and non-A&A, respectively. We construct our final A&A
set D ′ containing all d ∈ D where a(d) ≥ 0.1 ∗ n(d), i.e., we filter
out 2nd -level domains that are labeled as A&A less than 10% of the
time to eliminate false positives.

The one exception to this process was Amazon’s Cloudfront
CDN, which we observed hosting ad-related scripts and images.
We found 13 unique fully-qualified Cloudfront domains (e.g.,
dkpklk99llpj0.cloudfront.net) that immediately preceded or
succeeded A&A domains in our dataset. We manually mapped each
of these Cloudfront domains to the specific A&A company hosting
content there by examining the order of resource loads in the corre-
sponding inclusion chains. In most cases this mapping was trivial,
since we observed a one-to-one relationship between JavaScript
from a specific A&A company and a specific Cloudfront subdomain
(e.g., LuckyOrange and d10lpsik1i8c69.cloudfront.net).

To detect WebSockets that were initiated by A&A resources, we
descend the branch of the inclusion tree that includes the socket. If
the domains of any of the parent resources are present in D ′, we
consider the socket to be included by an A&A resource. We refer
to such sockets as A&A sockets.

3.3 Data Collection
To obtain a wide sample of popular and unpopular websites across
various categories for our crawls, we used 1.8 million unique web-
sites from Alexa Top Categories1 as our initial seed set. We sampled
the top 5.8K websites from each of the 17 categories. Additionally,
we randomly sampled 5.8K websites from Alexa’s top 1 million.
After removing duplicates, around 100K websites remained, which
we use for our crawls.

We built a crawler on top of the Chrome Remote Debugging
Protocol to drive the Chrome browser. The crawler works as fol-
lows: for every websitew in our list, it visits the homepage. It then
proceeds to extract all links L from the homepage that points tow .

1https://www.alexa.com/topsites/category/Top

Table 1: High-level statistics for our crawls.

% Sites % Sockets # Unique % Sockets # Unique
Crawl Dates w/ w/ A&A A&A w/ A&A A&A

Sockets Initiators Initiators Receivers Receivers
Apr 02–05, 2017 2.1 60.6 75 73.7 16
Apr 11–16, 2017 2.4 61.3 63 74.6 18
May 07–12, 2017 1.6 60.2 19 69.7 15
Oct 12–16, 2017 2.5 63.4 23 63.7 18

Our crawler randomly visits 15 links from L. If |L| < 15, our crawler
tries to crawl 15−|L| additional links from the visited pages. It keeps
doing so until it has crawled a total of 15 pages from w , or there
are no more links to crawl. To make our crawlers look realistic, we
crawled using a valid User-Agent, scrolled pages to the bottom,
and waited ∼60 seconds between subsequent page visits.

Overall, we performed four crawls over our sampled 100K web-
sites. Two crawls were performed just prior to the release of Chrome
58 (which included the patch for the WRB bug) [48] between April
2–5 and April 11–16, 2017. To observe if the patch affected the
usage of WebSockets by websites and A&A companies, we ran two
more crawls after the release of Chrome 58. The first of these crawls
was performed right after the patch between May 07–12, 2017. The
second crawl was performed between October 12–16, 2017. Table 1
shows the high-level statistics for our study.

4 ANALYSIS
In this section, we analyze our dataset to understand the usage of
WebSockets, the A&A companies involved, and the content being
sent and received over the sockets.

4.1 Overall WebSocket Usage
We provide an overview of WebSocket usage in Table 1. We observe
that only ∼2% of the websites use WebSockets (column 2), with
6–12 connections on average per website that uses WebSockets.

Among the WebSockets we observe, >90% contact a third-party
domain (i.e., the WebSocket was cross-origin) and 64–75% contact
an A&A domain (column 5). Across all four crawls, 382 unique
third-party domains and 20 A&A domains are contacted through
WebSockets. Similarly, 60–63% of the WebSockets are initiated by
a resource from an A&A domain (column 3). In total, we observe
resources from 94 unique A&A domains initiating WebSockets.

We observe that A&A initiators (entities starting a WebSocket
connection) and receivers (entities accepting a WebSocket connec-
tion) are involved in an order of magnitude more WebSocket con-
nections than non-A&A initiators and receivers. Furthermore, we
see that A&A initiators contacted only a few partners, whereas
more than 47% of the A&A receivers are contacted by ≥10 parties.
Publishers. To answer how widespread WebSocket usage is
among publishers, we plot Figure 3. We analyze the fraction of
A&A and non-A&A WebSockets observed over publishers sorted
by Alexa rank.We find that the fraction of A&A sockets is twice that
of non-A&A sockets across all ranks. We also find that both types of
WebSockets were most prevalent on highly-ranked domains, with a
drop occurring between 10K and 20K. The fraction of A&A sockets
in top 10K publishers is 4.5 times higher than that of non-A&A
sockets. This demonstrates that WebSocket usage, especially A&A

adnet/data.ws
ads/script.js
dkpklk99llpj0.cloudfront.net
d10lpsik1i8c69.cloudfront.net
https://www.alexa.com/topsites/category/Top

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Bashir et al.

Table 2: Top 15 WebSocket initiators
sorted by the total number of unique re-
ceivers. A&A initiators are in bold.

Receivers
Initiator Total A&A Socket Count
facebook 35 11 441
espncdn 35 0 92

h-cdn 30 0 39
doubleclick 29 9 250

slither 25 0 33
google 23 11 381

youtube 18 8 129
cloudflare 15 1 873
addthis 14 8 101
hotjar 13 7 2407

googlesyndication 10 6 71
adnxs 8 3 31

googleapis 7 0 157
sharethis 6 4 20

twitter 6 5 21

Table 3: Top 15 A&A WebSocket re-
ceivers, sorted by the total number of
unique initiators.

Initiators
Receiver Total A&A Socket Count
intercom 156 16 5531
33across 57 19 1375
zopim 44 12 19656

realtime 41 27 1548
smartsupp 26 4 670

feedjit 25 10 3013
inspectlet 25 6 820

pusher 22 8 634
hotjar 17 11 2249
disqus 17 13 4798

freshrelevance 10 2 403
lockerdome 10 8 408

velaro 4 3 62
truconversion 3 2 298

simpleheatmaps 1 0 93

Table 4: Top 15 initiator/receiver pairs
communicating via WebSockets. A&A
domains are in bold.

Initiator Receiver Socket Count
webspectator realtime 1285

google zopim 172
blogger feedjit 158
hotjar intercom 144

clickdesk pusher 125
cdn77 smartsupp 122

acenterforrecovery intercom 114
facebook zopim 112

vatit intercom 110
plymouthart intercom 108

welchllp intercom 105
biozone intercom 101

getambassador pusher 101
rubymonk intercom 98

googleapis sportingindex 96
A&A domain to itself 36,056

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 200k 400k 600k 800k 1M

P
e
rc

e
n
ta

g
e
 o

f
S

o
c
k
e
ts

Alexa Site Rank (bins of 10,000)

A&A
Non A&A

Figure 3: WebSocket usage by Alexa site rank.

sockets, is not a rarity confined to long-tail publishers; in fact, A&A
sockets are widespread amongst top publishers.
Before and After. Chrome rolled out the patch for WRB in
version 58 onApril 19, 2017. To understand if the release of the patch
affected the usage of WebSockets, we can compare the statistics in
Table 1 from our crawls before and after this date. Although we see
that there has been a significant drop in the number of unique A&A
domains initiating WebSockets over time (column 4), the fraction of
A&A-initiated sockets has essentially remained the same (column
3). In total, 56 A&A initiators disappeared between our first and last
crawl, including DoubleClick, Facebook, and AddThis. It is unclear
why these major advertising companies abandoned WebSockets.

With respect to A&A socket receivers, Table 1 shows that there
has been essentially no change over time (column 6). As we show
in § 4.2, many of the A&A receivers provide services that are depen-
dent onWebSockets (e.g., real-time commenting and chat), thus it is
not surprising that these companies have not altered their software.

4.2 Initiators and Receivers
Next, we take a deeper look into the domains that initiate and
receive WebSockets. Table 2 shows the top 15 domains whose re-
sources initiate WebSockets; A&A domains are shown in bold. We
observe that scripts from some of the largest players in the online
advertising ecosystem (e.g., DoubleClick, Facebook, and AppNexus)

create WebSockets to multiple other A&A domains. This demon-
strates that major ad exchanges have embraced WebSockets, al-
though as noted above, some have discontinued this practice. In
§ 4.3, we discuss what data was being sent and received over the
WebSockets by these big players.

Table 3 shows top 15 A&A domains that we observe receiving
WebSocket connections. Only 2.5% of the initiators that create Web-
Sockets to these domains are A&A domains, meaning many of the
incoming connections are initiated by benign domains, or even
first-party publishers. These WebSockets are particularly problem-
atic with respect to the WRB: since the scripts that initiated the
WebSockets were not blocked by AdBlock Plus, the only way to
stop these connections would be to block the WebSockets them-
selves. To confirm this, we used the EasyList and EasyPrivacy rule
lists to determine if scripts in the inclusion chains leading to A&A
sockets would have been blocked. We find that only ∼5% of these
A&A chains would have been blocked. In contrast, ∼27% of A&A
chains in our overall dataset are blocked by these rule lists.2

In contrast to the initiators in Table 2, the A&A receivers are less
well-known companies that provide a variety of services. The most
recognizable company, Disqus, provides user comment boards as a
service to publishers; it is also an ad network that enables publish-
ers to monetize their comment boards by displaying targeted ads.
33across and Lockerdome are advertising platforms. Inspectlet, Hot-
jar, TruConversion, and SimpleHeatmaps are session replay services
that track user interactions within websites to generate detailed an-
alytical heatmaps of mouse movements, click, and keystrokes [17].
Zopim, Velaro, Smartsupp, and Intercom provide customer service
live-chat widgets. The variety of business models offered by the
receivers in Table 2 reveals an important point: WebSockets are
being used to serve advertisements and to track users.

Table 4 shows the top 15 initiator/receiver pairs that created A&A
sockets (i.e., one or both of the parties must be an A&A domain),
sorted by total WebSockets. We aggregate cases where the initiator

2We compare the rule lists to our chains post-hoc, which may miss some requests that would have
been blocked at load-time in the browser. Furthermore, these rule lists whitelist some URL patterns
to avoid site breakage [16].

How Tracking Companies Circumvented Ad Blockers Using WebSockets IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Table 5: Items being sent by and received by A&A domains
via WebSockets and HTTP/S.

WebSockets HTTP/S
Sent Item Count % Count %
User Agent 40,231 100.0 99,942,662 100.0

Cookie 28,122 69.90 22,752,063 22.77
IP 2,662 6.62 896,162 0.90

User ID 1,731 4.30 1,116,111 1.12
Device 1,453 3.61 177,101 0.18
Screen 1,443 3.59 104,794 0.10

Browser 1,368 3.40 89,614 0.09
Viewport 1,366 3.40 336,704 0.34

Scroll Position 1,366 3.40 291 0.00
Orientation 1,366 3.40 71 0.00
First Seen 1,366 3.40 8,148 0.01
Resolution 1,366 3.40 132,742 0.13
Language 722 1.79 914,628 0.92

DOM 654 1.63 8,587 0.01
Binary 396 0.98 6,267 0.01
No data 7,176 17.84 - -

Received Item Count % Count %
HTML 18,976 47.16 11,599,601 11.61
JSON 5,152 12.81 1,633,849 1.63

JavaScript 356 0.88 27,027,458 27.04
Image 126 0.31 21,324,840 21.34
Binary 99 0.25 496,929 0.50
No data 8,580 21.33 - -

and receiver are the same and present the total in the last row
of Table 4. Unsurprisingly, the vast majority of A&A sockets fall
into this category (e.g., we observe 19,064 WebSockets initiated by
Zopim to themselves). The cases where the initiator and receiver
are different are more interesting, in the sense that these pairs of
companies chose to interface via WebSockets. These cases are also
more troubling from a privacy perspective, since theWRBmay have
prevented blockers from halting information flows to third-parties
(if the initiator’s script was not blocked in the first place).

4.3 Content Analysis
In this section, we investigate the content of messages being sent
and received over the WebSockets. For sent messages, we would
like to know if any Personally Identifiable Information (PII) or
fingerprinting-related browser state are being sent, since A&A
domains can use this information to track users [2, 19, 31, 43, 51].
For received messages, we are interested in whether ad images or
JavaScript (that can be used to further exfiltrate data or retrieve
ads) are being downloaded.
Sent Data. Table 5 shows different items that we observe being
sent and received over the A&A sockets. For comparison, we also
present statistics on how frequently we observed those same items
being sent/received over HTTP/S to any A&A domain. Many of
the items, such as user-agents, cookies, and IP addresses, are self-
explanatory. “User ID” refers to unique identifiers related to the
user such as Account ID, Client ID, and User ID itself. “Browser”
contains the fingerprinting variables used to identify Browser Type
and Browser Family, whereas “Device” refers to Device Type and
Device Family. “First seen” references a date field frequently seen

in messages, which we believe to be the user cookie creation date.
We extracted all of these variables from raw network traffic by
manually building up a large library of regular expressions.

In all cases, we observe a greater percentage of private infor-
mation being exfiltrated via WebSockets than over HTTP/S. This
includes stateful-tracking data such as cookies, IP addresses, and
unique identifiers. We also observed two particularly troubling
forms of data being exfiltrated via WebSockets:
• Fingerprinting: ∼3.4% of WebSockets exfiltrated finger-
printing data (e.g., screen size and orientation). 60 ini-
tiator/receiver pairs were involved in this practice, with
33across being the receiver in 97% of the pairs.
• DOMExfiltration: In∼1.6% ofWebSockets, the entire DOM
was serialized and uploaded to Hotjar, LuckyOrange, or Tru-
Conversion, for the purposes of enabling session replays
of user activity [17]. The DOM is potentially very privacy-
sensitive, as it may reveal search queries, unsent messages,
etc., within the given webpage.

We were unable to decode binary-encoded data being sent over
1% of theWebSockets. The results in Table 5 highlight that theWRB
allowed trackers to circumvent blockers and implement aggressive
tracking techniques.

We noted in § 4.2 that major companies like DoubleClick
and Facebook stopped initiating WebSocket connections after the
Chrome 58 release. We further discuss this odd coincidence in § 6.
We observe that, prior to discontinuing this practice, these two com-
panies were sending sensitive data to A&A receivers. For example,
DoubleClick was sending fingerprinting data to 33across, which
lists DoubleClick as one of their advertising partners [1].
Received Data. Next, we examine the information received
over A&A sockets. Of the 78.7% WebSockets that did receive any
data, WebSockets downloaded a greater percentage of HTML and
JSON, as compared to JavaScript and images which were down-
loaded more often over HTTP/S.

We did not observe any ad images being sent directly over Web-
Sockets (we checked for binary and base64 encoded media files).
However, we did find that Lockerdome was sending URLs to ad
images in their WebSocket responses, along with meta-data such
as image captions, heights, and widths. These images were hosted
on cdn1.lockerdome.com, which was not blacklisted in EasyList,
meaning that the WRB was effectively allowing Lockerdome to
circumvent ad blockers. Figure 4 shows three examples of these ads,
which are emblematic of the low-quality “clickbait” that is served
by unscrupulous ad networks and Content Recommendation Net-
works [9]. Furthermore, these are the same types of ads that were
flagged by users in theWRB bug reports [27, 50]. This demonstrates
that there are ad networks who were willing to exploit the WRB to
serve ads, and that unsurprisingly, these shady ad networks cater
to shady advertisers.

5 RELATEDWORK

The Online Ad Ecosystem. There are a plethora of empiri-
cal studies that have measured the online advertising ecosystem.
Barford et al. [7] looked at the major ad networks on the web by
mapping the online adscape, whereas Rodriguez et al. measured the

cdn1.lockerdome.com

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Bashir et al.

Figure 4: Example of ads received over WebSockets. Left:
“Odd Trick To Fix Sagging Skin”. Center: “Study Reveals
What Just A Single Diet Soda Does To You”. Right: “Win an
iPad Air 2 from Addicting Games!”

ad ecosystem on mobile devices [55]. Gill et al. [24] used browsing
traces to study the economy of online advertising and discovered
that most of the revenue is skewed towards a few big companies.
Acar et al. [2] conducted crawls over the Alexa Top-3K to find user
identifiers being shared across domains. Similarly, Cahn et al. [12]
observed that <1% of the trackers are present on 75% of Alexa Top-
10K websites. Falahrastegar et al. [20] looked at online trackers
across geographic regions.

Other empirical studies have focused on the individual implica-
tions of targeted advertising. Guha et al. [25] developed a controlled
method for measuring online ads on the web based on trained
personas. Carrascosa et al. [13] used these methods to prove that
advertisers use sensitive attributes about users when targeting ads.
Bashir et al. used retargeted ads to determine information flows
between ad exchanges [8], and demonstrate how close collabora-
tion among advertisers affect user privacy [10]. Olejnik et al. [46]
noticed winning bid prices being leaked during Real Time Bidding
(RTB) auctions and used this information to investigate the relative
value of different users.

Researchers have also studied bad practices in the advertising
ecosystem. Zarras et al. [57] studied ad networks running malicious
ad campaigns, whereas Bashir et al. [9] found some advertisers not
following industry guidelines and serving poor quality ads.
Tracking Mechanisms. Krishnamurthy et al. were one of the
first to bring attention to the pervasiveness of trackers and their pri-
vacy implications [32]. Since then, several studies have documented
the evolution of online tracking on the web [12, 18, 33, 34, 36].

Advertisers have upgraded their tracking techniques over time.
Some of the techniques they employ include persistent cookies [30],
local state in browser plugins [6, 53], browsing history through
extensions [54], and fingerprinting methods [2, 18, 19, 31, 40, 43, 45,
51]. Some studies have investigated information sharing through
cookie matching [2, 8, 21, 46].
Anti-tracking. To avoid pervasive tracking, users are increas-
ingly adopting tools that block trackers and ads [37, 49]. Pa-
paodyssefs et al. [47] proposed the use of private cookies to miti-
gate tracking, while Nikiforakis et al. added entropy to the browser
to combat fingerprinting [42]. Merzdovnik et al. and Iqbal et al.
performed large scale measurements of blocking extensions and
techniques to determine which are most effective [28, 39].

Snyder et al. [52] performed a browser feature usage survey and
showed that ad and tracking blocking extensions do not block all
standards equally, with WebSockets being blocked 65% of the times.
Franken et al. [22] reported that blocking extensions could some-
times be bypassed usingWebSockets. They found that the extention

developers made the mistake of using “http://*, https://*” fil-
ters instead of “ws://*, wss://*” for the onBeforeRequest event,
which prevents the interception of WebSocket connections.

To the best of our knowledge, there is no prior work which
provides an in-depth analysis of WebSocket usage across the web.

6 DISCUSSION

The Good. Overall, our measurements demonstrate that the
WRB was not leveraged to circumvent blockers by the vast majority
of A&A companies. Although we find that ∼68% of WebSockets
on the open web are initiated or received by A&A domains (see
§ 4.1), most of these companies have a legitimate reason to use
WebSockets. For example, Disqus, Zopim, and Intercom all offer
real-time services that are ideal use-cases for WebSockets (see § 4.2).
The Strange. A troubling finding of our study is that major
ad and tracking platforms, like Google, Facebook, AddThis, and
AppNexus adopted WebSockets (see Tables 2 and 4). This is ex-
tremely concerning, since these companies dominate the online
display ad ecosystem and are essentially omnipresent on the web.
Furthermore, we observe these companies sharing sensitive fin-
gerprinting data over the WebSockets. Yet strangely, we do not
observe these major ad platforms initiating WebSocket connections
after the release of Chrome 58 (when the WRB was patched, see
§ 4.1). The observational nature of our study prevents us of from
drawing causal conclusions about this finding, and indeed, it may
be coincidental.
The Bad. Previous studies of online tracking have repeatedly
identified “innovators” attempting to use bleeding-edge techniques
to gain an advantage against privacy-conscious users. Examples
include the use of persistent cookies and various kinds of finger-
printing [2, 6, 18, 19, 30, 31, 40, 43, 45, 51, 53, 54].

We identify five companies that appear to have been using the
WRB to circumvent blocking extensions: 33across was harvesting
large amounts of browser state that could be used for fingerprinting;
Lockerdome was downloading URLs to ads (see § 4.3 and Figure 4);
and Hotjar, LuckyOrange, and TruConversion were downloading
the entire DOM from webpages.
Conclusion. Our work demonstrates the lengths A&A compa-
nies are willing to go to counter blocking techniques, and highlights
the importance of measurement studies to keep up with the cur-
rent practices of A&A companies. With respect to the WRB, users
clamored for a patch after observing ads slipping through block-
ers [27, 50], but our results demonstrate that invisible tracking was
an equally important and disturbing implication of the WRB.

Our results add a longitudinal perspective to controlled stud-
ies that have identified other, novel techniques to bypass privacy-
preserving measures in browsers [22]. This body of work empha-
sizes the importance of patching browser vulnerabilities (in a rea-
sonable amount of time) that A&A companies can leverage to their
advantage. More broadly, this suggests that browser vendors need
to prioritize bug reports not just through the lens of usability and
security, but also privacy.

How Tracking Companies Circumvented Ad Blockers Using WebSockets IMC ’18, October 31-November 2, 2018, Boston, MA, USA

ACKNOWLEDGMENTS
We thank our shepherd, John Byers, and the anonymous reviewers
for their helpful comments. This research was supported in part by
NSF grants CNS-1563320 and IIS-1553088. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
NSF.

REFERENCES
[1] 33across. [n. d.]. ATTENTION PLATFORM FOR ADVERTISERS. 33across. https://

33across.com/attention-platform/.
[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and Clau-

dia Diaz. 2014. The Web Never Forgets: Persistent Tracking Mechanisms in the Wild. In Proc.
of CCS.

[3] Adblock Plus 2014. WebSocket connections can’t be blocked. AdBlock Plus Issue Tracker.
https://issues.adblockplus.org/ticket/1727.

[4] AdChoices 2017. Put the YourAdChoices Icon to Work for You. Digital Advertising Alliance.
http://youradchoices.com/learn.

[5] Sajjad Arshad, Amin Kharraz, and William Robertson. 2016. Include Me Out: In-Browser De-
tection of Malicious Third-Party Content Inclusions. In Proc. of Intl. Conf. on Financial Cryp-
tography.

[6] Mika Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan Good, and Chris Jay Hoof-
nagle. 2011. Flash cookies and privacy II: Now with HTML5 and ETag respawning. Available
at SSRN 1898390 (2011).

[7] Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and S. Muthukrishnan. 2014. Ad-
scape: Harvesting and Analyzing Online Display Ads. In Proc. of WWW.

[8] Muhammad Ahmad Bashir, Sajjad Arshad, , William Robertson, and Christo Wilson. 2016.
Tracing Information Flows Between Ad Exchanges Using Retargeted Ads. In Proc. of USENIX
Security Symposium.

[9] MuhammadAhmad Bashir, Sajjad Arshad, and ChristoWilson. 2016. “Recommended For You”:
A First Look at Content Recommendation Networks. In Proc. of IMC.

[10] Muhammad Ahmad Bashir and Christo Wilson. 2018. Diffusion of User Tracking Data in the
Online Advertising Ecosystem. In Proc. of PETS.

[11] BugReplay. 2016. Pornhub Bypasses Ad Blockers With Web-
Sockets. medium.com. https://medium.com/thebugreport/
pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323.

[12] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. 2016. An Empirical Study of
Web Cookies. In Proc. of WWW.

[13] JuanMiguel Carrascosa, JakubMikians, RubenCuevas, Vijay Erramilli, andNikolaos Laoutaris.
2015. I Always Feel Like Somebody’s Watching Me: Measuring Online Behavioural Advertis-
ing. In Proc. of ACM CoNEXT.

[14] Chrome Debugging Protocol [n. d.]. Chrome DevTools Protocol Viewer. GitHub. https:
//developer.chrome.com/devtools/docs/debugger-protocol.

[15] Stacy Cowley and Julianne Pepitone. 2012. Google to pay record $22.5 million fine for
Safari privacy evasion. CNNMoney. http://money.cnn.com/2012/08/09/technology/
google-safari-settle/index.html.

[16] EasyList [n. d.]. EasyList Policy. The EasyList authors.. https://easylist.to/pages/
policy.html.

[17] Steven Englehardt. 2017. No boundaries: Exfiltration of personal data by session-replay
scripts. Freedom to Tinker Blog. https://freedom-to-tinker.com/2017/11/15/
no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts.

[18] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site measure-
ment and analysis. In Proc. of CCS.

[19] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan Mayer,
Arvind Narayanan, and Edward W. Felten. 2015. Cookies That Give You Away: The Surveil-
lance Implications of Web Tracking. In Proc. of WWW.

[20] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard Mortier. 2014. The Rise of
Panopticons: Examining Region-Specific Third-Party Web Tracking. In Proc of. Traffic Moni-
toring and Analysis.

[21] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard Mortier. 2016. Tracking Per-
sonal Identifiers Across the Web. In Proc. of PAM.

[22] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. 2018. Who Left Open the Cookie
Jar? A Comprehensive Evaluation of Third-Party Cookie Policies. In Proc. of USENIX Security
Symposium.

[23] Masahiro Fujimoto. 2018. Introduction to the DOM. Mozilla. https://developer.mozilla.
org/en-US/docs/Web/API/Document_Object_Model/Introduction.

[24] Phillipa Gill, Vijay Erramilli, Augustin Chaintreau, Balachander Krishnamurthy, Konstantina
Papagiannaki, and Pablo Rodriguez. 2013. Follow the Money: Understanding Economics of
Online Aggregation and Advertising. In Proc. of IMC.

[25] Saikat Guha, Bin Cheng, and Paul Francis. 2010. Challenges in Measuring Online Advertising
Systems. In Proc. of IMC.

[26] Raymond Hill. [n. d.]. A companion extension to uBlock Origin. GitHub. https://github.
com/gorhill/uBO-Extra.

[27] Raymond Hill. 2016. ws-gateway websocket circumvention ? #1936. GitHub. https://
github.com/gorhill/uBlock/issues/1936.

[28] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospective Measurement
and Analysis of Anti-Adblock Filter Lists. In Proc. of IMC.

[29] Issue 129353 2012. chrome.webRequest.onBeforeRequest doesn’t intercept WebSocket re-
quests. Chromium Bugs. https://bugs.chromium.org/p/chromium/issues/detail?id=
129353.

[30] Samy Kamkar. 2010. Evercookie - virtually irrevocable persistent cookies. http://samy.pl/
evercookie/.

[31] T. Kohno, A. Broido, and K. Claffy. 2005. Remote physical device fingerprinting. IEEE Trans-
actions on Dependable and Secure Computing 2, 2 (2005), 93–108.

[32] Balachander Krishnamurthy, Delfina Malandrino, and Craig E. Wills. 2007. Measuring Privacy
Loss and the Impact of Privacy Protection in Web Browsing. In Proc. of SOUPS.

[33] Balachander Krishnamurthy, Konstantin Naryshkin, and Craig Wills. 2009. Privacy Diffusion
on the Web: A Longitudinal Perspective. In Proc. of WWW.

[34] Balachander Krishnamurthy and Craig Wills. 2011. Privacy leakage vs. Protection measures:
the growing disconnect. In Proc. of W2SP.

[35] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo Wilson, and
Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the Use of Outdated JavaScript
Libraries on the Web. In Proc of NDSS.

[36] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner. 2016. Inter-
net Jones and the Raiders of the Lost Trackers: An Archaeological Study ofWeb Tracking from
1996 to 2016. In Proc. of USENIX Security Symposium.

[37] Matthew Malloy, Mark McNamara, Aaron Cahn, and Paul Barford. 2016. Ad Blockers: Global
Prevalence and Impact. In Proc. of IMC.

[38] Mapx. 2016. ws-gateway websocket circumvention? GitHub. https://github.com/
gorhill/uBlock/issues/1936.

[39] GeorgMerzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian Neuner, Martin
Schmiedecker, and Edgar R.Weippl. 2017. BlockMe If YouCan: A Large-Scale Study of Tracker-
Blocking Tools. In Proc. of Euro S&P.

[40] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas in HTML5.
In Proc. of W2SP.

[41] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting Anti Ad-
blockers in the Wild. PoPETs 2017, 3 (2017), 130.

[42] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. PriVaricator: Deceiving Finger-
printers with Little White Lies. In Proc. of WWW.

[43] Nick Nikiforakis, Alexandros Kapravelos,Wouter Joosen, Christopher Kruegel, Frank Piessens,
and Giovanni Vigna. 2013. CookielessMonster: Exploring the Ecosystem ofWeb-Based Device
Fingerprinting. In Proc. of IEEE Symposium on Security and Privacy.

[44] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez, Marjan
Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi, and Steven J. Mur-
doch. 2016. Adblocking and Counter Blocking: A Slice of the Arms Race. In Proc. of FOCI.

[45] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. 2012. Why Johnny Can’t Browse in Peace:
On the Uniqueness of Web Browsing History Patterns. In Proc. of HotPETs.

[46] Lukasz Olejnik, TranMinh-Dung, and Claude Castelluccia. 2014. Selling off Privacy at Auction.
In Proc of NDSS.

[47] Fotios Papaodyssefs, Costas Iordanou, Jeremy Blackburn, Nikolaos Laoutaris, and Konstantina
Papagiannaki. 2015. Web Identity Translator: Behavioral Advertising and Identity Privacy
with WIT. In Proc. of HotNets.

[48] pkalinnikov. [n. d.]. Issue 2449913002: Support WebSocket in WebRequest API. (Closed).
Chromium Code Reviews. https://codereview.chromium.org/2449913002/.

[49] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed Users: Ads and Ad-Block
Usage in the Wild. In Proc. of IMC.

[50] Rhana Joy 2016. TechnoBuffalo.com. EasyList Forum. https://forums.lanik.us/
viewtopic.php?p=110902.

[51] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and Defending
Against Third-party Tracking on the Web. In Proc. of NSDI.

[52] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser Feature Usage on
the Modern Web. In Proc. of IMC.

[53] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay Hoofnagle.
2010. Flash Cookies and Privacy.. In AAAI Spring Symposium: Intelligent Information Privacy
Management.

[54] Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring the Privacy
Diffusion Enabled by Browser Extensions. In Proc. of WWW.

[55] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger, Konstantina
Papagiannaki, Hamed Haddadi, and Jon Crowcroft. 2012. Breaking for Commercials: Charac-
terizing Mobile Advertising. In Proc. of IMC.

[56] Steven J. Vaughan-Nichols. 2017. Chrome is themost popular web browser of all. ZDNet. http:
//www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/.

[57] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz, Christopher
Kruegel, and Giovanni Vigna. 2014. The Dark Alleys of Madison Avenue: Understanding Ma-
licious Advertisements. In Proc. of IMC.

https://33across.com/attention-platform/
https://33across.com/attention-platform/
https://issues.adblockplus.org/ticket/1727
http://youradchoices.com/learn
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://developer.chrome.com/devtools/docs/debugger-protocol
https://developer.chrome.com/devtools/docs/debugger-protocol
http://money.cnn.com/2012/08/09/technology/google-safari-settle/index.html
http://money.cnn.com/2012/08/09/technology/google-safari-settle/index.html
https://easylist.to/pages/policy.html
https://easylist.to/pages/policy.html
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://github.com/gorhill/uBO-Extra
https://github.com/gorhill/uBO-Extra
https://github.com/gorhill/uBlock/issues/1936
https://github.com/gorhill/uBlock/issues/1936
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
http://samy.pl/evercookie/
http://samy.pl/evercookie/
https://github.com/gorhill/uBlock/issues/1936
https://github.com/gorhill/uBlock/issues/1936
https://codereview.chromium.org/2449913002/
https://forums.lanik.us/viewtopic.php?p=110902
https://forums.lanik.us/viewtopic.php?p=110902
http://www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/
http://www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/

	Abstract
	1 Introduction
	2 Background
	2.1 WebSockets
	2.2 webRequest API
	2.3 The Rise and Fall of a Bug

	3 Methodology
	3.1 Inclusion Tree
	3.2 WebSocket Detection and Labeling
	3.3 Data Collection

	4 Analysis
	4.1 Overall WebSocket Usage
	4.2 Initiators and Receivers
	4.3 Content Analysis

	5 Related Work
	6 Discussion
	References

