
Two Novel Server-Side Attacks against Log File

in Shared Web Hosting Servers

Seyed Ali Mirheidari
1
, Sajjad Arshad

2
, Saeidreza Khoshkdahan

3
, Rasool Jalili

4

1
Computer Engineering Department, Sharif University of Technology, International Campus, Iran

2
School of Electrical and Computer Engineering, Shahid Beheshti University, General Campus, Iran

3
Sabzfaam Information Technology Corporation, Iran

4
Computer Engineering Department, Sharif University of Technology, Iran

mirheidari@kish.sharif.edu, s.arshad@mail.sbu.ac.ir, khoshkdahan@sabzfaam.ir, jalili@sharif.edu

Abstract—Shared Web Hosting service enables hosting

multitude of websites on a single powerful server. It is a well-

known solution as many people share the overall cost of

server maintenance and also, website owners do not need to

deal with administration issues is not necessary for website

owners. In this paper, we illustrate how shared web hosting

service works and demonstrate the security weaknesses rise

due to the lack of proper isolation between different

websites, hosted on the same server. We exhibit two new

server-side attacks against the log file whose objectives are

revealing information of other hosted websites which are

considered to be private and arranging other complex

attacks. In the absence of isolated log files among websites,

an attacker controlling a website can inspect and manipulate

contents of the log file. These attacks enable an attacker to

disclose file and directory structure of other websites and

launch other sorts of attacks. Finally, we propose several

countermeasures to secure shared web hosting servers

against the two attacks subsequent to the separation of log

files for each website.

Keywords—Shared Web Hosting; Server-Side Attack; Log

Poisoning; Log Snooping

I. INTRODUCTION

Nowadays with Internet popularity increasing, many

people are creating their own websites. In order to

publish, many people prepare their own dedicated servers.

But with the increase in hardware power, it is possible to

host several websites on a single physical server. This

kind of web hosting is commonly known as shared web

hosting. In shared web hosting, the physical resources are

shared among different websites simultaneously. Also, the

administration of the webserver is handled by web hosting

providers and owners of these websites do not need much

information and experiences about the administration of

their websites. However, limited resources force users to

suffer from low performance. Furthermore, shared web

hosting servers have some security issues since there is no

proper isolation between different websites [1].

According to the Zone-H site, the world has witnessed an

increasing number of website defacements [2]. In other

words, websites that are co-located with a vulnerable

website on a physical server might be in danger too and a

noticeable number of defacements are released in only

one IP or physical server mass deface [3,4].

In this paper, we introduce two novel server-side

attacks against the log management system of webservers

in shared web hosting servers: Log Poisoning and Log

Snooping. In order to be vulnerable to these attacks, a

webserver must be setup with default configuration in

respect to how logs are stored, thus an attacker who

controls a website hosted on a shared web hosting server

is able to attack all other websites hosted on the same

webserver. In other words, he is able to manipulate logs

of other websites (Log Poisoning) or to inspect their logs

(Log Snooping). This way, an attacker can steal private

information, reveal file and directory structure of

websites, and use these attacks to launch other complex

attacks.

In this paper, we focus on the Apache webserver to

present the attacks. According to Netcraft [5], Apache

webserver has the highest usage among other webservers

such as Microsoft IIS. Since most countermeasures are

developed for POSIX operating systems, this study

mainly focuses on Linux operating system. Also, we use

PHP programming language because of higher popularity,

usability and reliability. However, the discussed attacks

are not unique to Apache webserver and every webserver

installed with certain configuration is potentially

vulnerable to aforementioned attacks.

The rest of this paper is structured as follows: In

Section II the overall architecture of shared web hosting

servers is portrayed. We describe two novel server-side

attacks against log file in Section III. In Section IV, we

present other complex attacks which can be launched as a

result of two aforementioned server-side attacks. In

Section V, we present several countermeasures against

server-side attacks and we conclude our paper in

Section VI.

II. SHARED WEB HOSTING ARCHITECTURE

In this section we discuss the details of shared web

hosting architecture to obtain a better view for

understanding the attacks presented in Section III. In

shared web hosting, a webserver is hosting many

websites, simultaneously. The website owner has a FTP

account which can upload new files for his website and

uploaded files are owned by the owner user account. A

webserver run as a specific user account (apache, daemon,

and www-data) and handles all HTTP requests for all

websites. So, webserver must be able to read the files on

each website. However, in some Content Management

Systems (CMS), the users must be able to upload files and

therefore webserver needs the write access to website

directories besides read access. Fig. 1 depicts the

necessary permissions for Apache webserver in Linux

operating system where web1 and web2 are Linux users

and owners of two different websites hosted on the shared

web hosting server.

Figure 1. Essential Permissions for Apache Webserver

In shared web hosting, there are two general forms of

webserver configuration for executing) scripts as below:

• Configure webserver to load the script interpreter as

a webserver module.

• Configure webserver to run the script interpreter as

a CGI binary.

A webserver module is loaded by webserver process

or is compiled into the webserver binary, which means the

webserver process contains a binary image of the

interpreter. A CGI is executed as a single process for each

request, meaning that the webserver will create a new

interpreting process for each arriving request. Using script

interpreter as webserver module is more stable under load

and much more efficient in handling requests and

resource management, than the CGI mode. But CGI mode

is more secure because malicious scripts do not affect

webserver process.

III. LOG FILE ATTACKS

Web servers usually store the information of

processed requests in a log file. A log file usually includes

some information like Domain Name, Client IP, Request

Time, Request Type (GET or POST), Requested

Filename, and Size of Transferred File and Return Status

Code from webserver. The two attacks presenting are

based on this fact that webserver uses a single file for

storing logs of various websites and the log file is

accessible by every script executed by the webserver.

These weaknesses enable an attacker to open log file in a

write mode and modify logs residing on the same

webserver (Log Poisoning). It also allows the attacker

scripts to open log file, inspect logs of other websites and

misuse the information that is supposed to be private (Log

Snooping). The details of these attacks are presented in

the following two sections.

A. Log Poisoning

In shared web hosting with default configuration, log

file can be modified only by the root user and is only

readable by other users. On the other hand, webserver

should have a permission to write in log file, regardless of

the user account that is run with. Therefore, in most

webservers like Apache, parent webserver is executed

with root privilege and child webservers are run by parent

webserver to handle the requests. In some operating

systems like Linux, file descriptors opened by parent

process, will be inherited to child processes. This way,

parent webserver can open the log file in write mode and

fork child webservers to allow them to write in log file.

Thus, log file descriptor is inherited by child webservers

and consequently they can modify log file although they

are not run with root privilege. Since scripts of websites

hosted on the shared web hosting server are usually

executed by child webserver processes, they are able to

modify the log file. In Log Poisoning attack, an attacker

creates a script to find log file descriptor and open the log

file in write mode. For instance, in Linux operating

system, information about open files of each process

exists in /proc/PID/fd, in which PID is the process ID.

Then, an attacker creates a PHP script to find the open

files of child webserver process which executes the script

and re-opens the log file with write access. The sample

PHP script for Log Poisoning attack is shown in Fig. 2.

To be susceptible to this attack, Apache must use PHP

interpreter as an Apache module because when Apache

runs PHP interpreter as CGI, the new PHP interpreter

process does not inherit log file descriptor from Apache,

so the malicious PHP script is not able to re-open log file

with write access and modify its content.

Having the write access to the log file, attackers can

do malicious tasks like clearing other website requests in

order to cover track of their penetration or adding some

fake requests to the log file. Generally, it is true to say

that write access to log file in shared web hosting servers

has harmful consequences and attackers can accomplish

various attacks on victim websites by poisoning the log

file.

B. Log Snooping

In default configuration, log file is readable by all

users. So, webserver user can read the log file and

consequently all scripts run by the webserver are able to

read the contents of log file. Therefore, scripts of a

website are able to read the logs of other websites located

on the same shared web hosting server. In Log Snooping

attack, an attacker searches the victim website logs to

retrieve important information and use the information to

follow malicious activities. Unlike Log Poisoning attack,

Log Snooping attack is feasible in two modes which

webserver runs the script interpreter (Module or CGI).

Figure 2. Log Poisoning Script (PHP-Module Mode)

Figure 3. Log Snooping Script (PHP-Module Mode)

Figure 4. Log Snooping Script (PHP-CGI Mode)

If the webserver administrator made the log file

unreadable for other users, attacker can use the PHP script

shown in Fig. 3 to accomplish Log Snooping attack. Also,

Fig. 4 access to the log file enables attackers to access

much useful information. One of the most important

information is the structure of files and folders of victim

websites. Attacker can reconstruct the site tree using the

requested URLs and be informed about the names of

website files and folders. For example, in several

hardening best practices, the name of administrator

authentication page is changed in order to prevent the

attackers from entering administration panel. But with

using site tree, attacker can bypass this technique and find

the authentication page. Then the attacker can use

techniques like SQL Injection to obtain hashed password

of administrator and find clear password text by using

brute force of encoded password or using brute force for

both user and password in order to obtain admin login

credentials. It is important to know that if the attacker

does not have access to the shared web hosting server, he

will not be able to find the authentication page easily.

IV. RESULTING ATTACKS

The Log Poisoning and Log Snooping attacks can be

used as intermediate steps to accomplish other attacks

against the websites residing on a shared web hosting

server. The resulting attacks will be presented in the

following sections with more details.

A. Executing Malicious Code

Log Poisoning attack enables attackers to execute

malicious codes with vulnerable website rights. Some

websites are vulnerable since they allow special code

reuse by including files. In other words, users supply the

values of some parameters used in URL in order to

include desired files. In this case, attackers try to misuse

and include some malicious files. One of the most

common attacks in this area is known as Local File

Inclusion (LFI) [6] which leads in including victim server

local files [7]. During recent years, several methods such

as LFI2RCE [8,9] are proposed which are able to execute

remote code using LFI attack. One of such methods is

adding some malicious code to the log file of webserver

and including the log file by LFI which leads in execution

of malicious code by victim website. However, without

having access to the local victim file system, poisoning

the log file is a complicated and hard task and, sometimes

impossible. In shared web hosting servers, using Log

Poisoning attack, an attacker can add some malicious

code to the log file easily and accomplish the LFI2RCE

attack.

B. Drawing Site Tree

As mentioned before, if an attacker reads the

webserver log file, he will be able to draw the site tree

which includes file and directory names of different

websites and use this information in dangerous ways. In

many web vulnerability scanners, crawling is definitely

the most important part due to this that the scanner might

miss vulnerabilities. So if the crawling engine is weak, the

scanner will certainly miss the vulnerabilities [10]. If an

intruder has access to victim webserver log file, he can

draw an accurate site tree like as web vulnerability and

pass this arguably phase. In other words, accurate site tree

is the first step of successful penetration testing cycle.

C. Finding Co-located Websites

Depending on the configuration of webserver, there

are various methods for identifying the websites hosted on

the shared web hosting server. The attacker can write a

script to list directories recursively and finds the names of

co-located websites. Also, using Log Snooping attack,

attacker is able to find co-located websites. As mentioned

before, there is a variety of information about client

requests available in the log file. One is the virtual host

name or website domain name that is serving the request.

Hence, the attacker can read the content of log file and list

the names of websites that are located on the server.

D. Revealing Sensitive Information

Generally most developers send authentication tokens

(usernames, passwords, session identifiers) via GET

variables and because webserver records information

provided by GET variables, sensitive information reveals

in case of Log Snooping. For instance, consider the below

URL which is sent to the victim website, once the submit

button on authentication page is clicked:

https://www.victim.com/login?user=admin&pass=plain_or_hash_pass

Most webservers with default configuration log this GET

request with related parameters in clear text. Therefore, an

intruder can use this information to login to the victim

website as a valid user.

V. COUNTERMEASURES

Since using shared web hosting is popular, securing

the solution is a more proper idea than skipping this

service. For this purpose, several methods have been

proposed in order to make a more secure shared web

hosting installation [11,12,13,14,15]. In this section, we

present countermeasures developed for Apache webserver

on Linux and how it confronts the server-side attacks

described in Section III. If we examine these attacks

carefully, we can figure out the main cause of the attacks

is the lack of proper isolation between log files of

different websites.

In default configuration, webservers use a single log

file for recording request of all websites hosted on the

shared web hosting server. In order to stop exampled

attacks against log file, it is a common practice to create

separate log file for each website and put log files in

separate directories [16]. A sample configuration in

Apache webserver for creating separate log file for each

virtual host website is shown in Fig. 5. In addition, the

proper permissions must be set on the log file directories

as the malicious scripts cannot read from or write on

them. The necessary permissions on log file directories in

Linux operating system are depicted in Fig. 6. In Fig. 6,

web1 and web2 are owners of the corresponding websites.

In default configuration, Apache is executed by a

unique user who has access to every website. A guessable

idea is that Apache runs each website by its owner user

account. Therefore, different methods have been

introduced for Apache in the past years. As the first

attempts, suEXEC [17] and suPHP [18] have been

introduced as Apache modules. The suEXEC is a wrapper

binary file and an Apache module. When a HTTP request

arrives, Apache runs the wrapper and finds the script

name and User/Group ID [1]. This module can only be

used with CGI [19] or FastCGI [20] programs.

Figure 5. Log Separation in Apache for Each Website

Figure 6. Necessary Permissions for Log Files’ Directories in Linux

In order to install suEXEC, you must prepare a unique

CGI or FastCGI binary file for each website and user and

group ID of the owner must be set as owner of website.

To be mentioned, using suEXEC with CGI has very low

performance in a way that Chary has named it as a

performance killer [12]. Same as suEXEC, suPHP runs

PHP scripts with the specified user and group ID. In

contrast to suEXEC, there is no need of a unique CGI or

FastCGI binary file for each website with suPHP module.

Also as same as suEXEC, suPHP suffers from low

performance [1].

When Apache 2.0 has been released, different

MPM [21] methods have been introduced. Some of them

are developed to solve the shared web hosting security

problem. Sean Gabriel Heacock introduced Peruser

MPM [22]. Peruser MPM uses processes instead of

threads to handle requests. This MPM runs a control

Apache process as root privilege and the control process

creates several multiplexer processes with Apache user

privilege. The multiplexer process listens on port 80,

accepts incoming requests and reads the request to check,

from destination website. Then, it passes the request to

relevant worker process to handle it. The worker

processes run under the user and group ID of respective

website owners. Also the control process always

maintains a pool of idle worker processes to increase the

performance [1].

Another relevant MPM introduced by Steinar

Gunderson is ITK MPM [23]. ITK MPM creates a

managing Apache process with Root privilege. The

managing process spawns several listeners with root

privilege. The listener process listen on port 80 and

handles new request to determine which website it is.

Then, it creates a new Apache handler process with user

and group ID of website owner to serve the request. But,

the main difference of ITK MPM with Peruser MPM is

that after the request has been completed, the handler

Apache process is terminated. In other words, ITK MPM

does not maintain a pool of idle handler processes for

serving the requests. Due to this, ITK MPM is a good

solution, if the server has high number of users.

According to [15], the ITK MPM solution behaves

relatively well in all aspects. However, allocating separate

log file for each website does not seem a perfect solution

all the time, since by increasing number of websites; it

will cause some problems with insufficient file

descriptors.

VI. CONCLUSION

Shared web hosting is the most common type of web

hosting due to its low monthly costs and the need of

almost no knowledge and experience from the customer

side for administration of their websites. However, the

websites hosted on the shared web hosting servers suffer

from some security weaknesses.

This paper addressed two novel server-side attacks

which exploit the lack of proper isolation between the log

files of different websites resided on a shared web hosting

server. We demonstrated that webservers using a single

log file to store website logs are prone to an attacker in

control of a website hosted on a shared web hosting server

can manipulate and inspect logs of other websites hosted

on the same server, thus the attacker is able to steal

private information, reveal file and directory structures of

other websites and conduct other complex attacks.

Eventually, we presented countermeasures and how they

secure the shared web hosting installations.

REFERENCES

[1] H. Stuart. The Challenge with Securing Shared Hosting. http://

blog.stuartherbert.com/php/2007/11/21/the-challenge-with-

securing-shared-hosting/ (Access date: 25 September 2012).

[2] Zone-H: Defacements Statistics 2008 - 2009 - 2010*. http://zone-

h.com/news/id/4735 (Access date: 1 September 2012).

[3] Zone-H. Defacements Statistics 2010: Almost 1,5 million websites

defaced, what's happening? http://zone-h.com/news/id/4737

(Access date: 5 September 2012).

[4] N. Nikiforakis, W. Joosen, and M. Johns, "Abusing Locality in

Shared Web Hosting," in European Workshop on System Security,

Salzburg, Austria, 2011.

[5] Netcraft: October 2012 Web Server Survey. http://

news.netcraft.com/archives/2012/10/02/october-2012-web-server-

survey.html (Access date: 5 October 2012).

[6] OWASP Top Ten Project. (2007) The Ten Most Critical Web

Application Security Vulnerabilities. https://www.owasp.org/

index.php/Top_10_2007 (Access date: 16 September 2012).

[7] Gordon Johnson, Remote and Local File Inclusion Explained.:

Hacking9, 2008.

[8] CWH Underground, "LFI to RCE Exploit with Perl Script," Dec

2008.

[9] T. Be'ery, "FYI: You got LFI," in Black Hat Europe, Amsterdam,

Netherlands, March 14-16 2012.

[10] M. Cova, and G. Vigna A. Doupe, "Why Johnny Can’t Pentest: An

Analysis of Black-box Web Vulnerability Scanners," , Bonn,

Germany, July 2010.

[11] T. Ballad and W. Ballad, Securing PHP Web Applications.:

Addison-Wesley Professional, 2008.

[12] C. Chary and C. Khamly. Securing A Shared Web Server. http://

xf.iksaif.net/papers/securing-a-shared-web-server.pdf (Access date:

22 September 2012).

[13] PHP Security Consortium. PHP Security Guide: Shared Hosts.

http://phpsec.org/projects/guide/5.html (Access date: 25 September

2012).

[14] M. Dees. Shared Hosting Security Concepts, Threats & Solutions.

http://docs.cpanel.net/twiki/pub/AllDocumentation/

TrainingResources/TrainingSlides08/SharedHostingSecurity.pdf

(Access date: 25 September 2012).

[15] S. A. Mirheidari, S. Arshad, and S. Khoshkdahan, "Performance

Evaluation of Shared Hosting Security Methods," in the 11th IEEE

International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012.

[16] Apache Log Files. http://httpd.apache.org/docs/2.2/logs.html

(Access date: 20 September 2012).

[17] Apache: suEXEC. http://httpd.apache.org/docs/2.0/suexec.html

(Access date: 15 September 2012).

[18] suPHP. http://www.suphp.org/Home.html (Access date: 16

September 2012).

[19] Apache: CGI. http://httpd.apache.org/docs/2.2/howto/cgi.html

(Access date: 1 September 2012).

[20] Apache: FastCGI. http://httpd.apache.org/mod_fcgid/ (Access date:

1 September 2012).

[21] Apache: Multi-Processing Module (MPM). http://httpd.apache.org/

docs/2.0/mpm.html (Access date: 10 September 2012).

[22] Peruser MPM. http://www.peruser.org/ (Access date: 23 September

2012).

[23] ITK MPM. http://mpm-itk.sesse.net/ (Access date: 22 September

2012).

